Understanding the variability of properties in Antheraea pernyi silk fibres.
نویسندگان
چکیده
Variability is a common feature of natural silk fibres, caused by a range of natural processing conditions. Better understanding of variability will not only be favourable for explaining the enviable mechanical properties of animal silks but will provide valuable information for the design of advanced artificial and biomimetic silk-like materials. In this work, we have investigated the origin of variability in forcibly reeled Antheraea pernyi silks from different individuals using dynamic mechanical thermal analysis (DMTA) combined with the effect of polar solvent penetration. Quasi-static tensile curves in different media have been tested to show the considerable variability of tensile properties between samples from different silkworms. The DMTA profiles (as a function of temperature or humidity) through the glass transition region of different silks as well as dynamic mechanical properties after high temperature and water annealing are analysed in detail to identify the origin of silk variability in terms of molecular structures and interactions, which indicate that different hydrogen bonded structures exist in the amorphous regions and they are notably different for silks from different individuals. Solubility parameter effects of solvents are quantitatively correlated with the different glass transitions values. Furthermore, the overall ordered fraction is shown to be a key parameter to quantify the variability in the different silk fibres, which is consistent with DMTA and FTIR observations.
منابع مشابه
Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk
The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins. Antheraea pernyi silk has more similar sequences to spider dragline silk than the silk from its domestic counterpart, Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper fur...
متن کاملSilk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range
Domestic (Bombyx mori) and wild (Antheraea pernyi) silk fibers were characterised over a wide spectral range from THz 8 cm -1 ( λ = 1.25 mm, f = 0.24 THz) to deep-UV 50 × 10 3 cm - 1 ( λ = 200 nm, f = 1500 THz) wavelengths or over a 12.6 octave frequency range. Spectral features at β-sheet, α-coil and amorphous fibroin were analysed at different spectral ranges. Single fiber cross sections at m...
متن کاملDiverse Evidence That Antheraea Pernyi (lepidoptera: Saturniidae) Is Entirely of Sericultural Origin
There is a preponderance of evidence that the tussah silkmoth Antheraea pernyi was derived thousands of years ago from the wild A. roylei. Historical, sericultural, morphological, cytogenetic, and taxonomic data are cited in support of this hypothesis. This explains why A. pernyi is very easy to mass rear, produces copious quantities of silk in its cocoons, and the oak tasar “hybrid”crosses bet...
متن کاملBiomimetic Nucleation of Hydroxyapatite Crystals Mediated by Antheraea pernyi Silk Sericin Promotes Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stem Cells
Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has...
متن کاملNatural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 33 شماره
صفحات -
تاریخ انتشار 2014